考研帮 > 备考 > 备考经验

考研论坛版友数二满分经验及总结分享



  概念区别:

  1.无界与无穷大
  无界是对任一M(无论多大),总存在x,使得f(x)>M,这里x任意,存在即可,不强调存在方式。
  无穷大是对任一M(无论多大),总存在x0,当x>x0时,f(x)>M(注,这里的无穷大时x趋近正无穷时,其他同理),这里的存在有限制。
  从定义,再结合图像,无穷算是无界的一种。但是无界不一定无穷
  无界是一个区间而无穷是针对一个趋势,举个例子1/x,在(0,+∞)是无界而同是这个函数x趋近0是无穷而趋近无穷则是0
  第二个例子xsinx,x趋近无穷满足无界的定义,是无界,但不是无穷,因为无论怎样取x0,x>x0总有函数等于0,也就是不存在这样的函数。也就是说对于一个无界的区间你如果有意识的话可以挑选一些数,有一定顺序组成一个新的函数的话完全可以成为无穷了。正如例子中你选π/2,5π/2,9π/2……是不是无穷?
  这也涉及到一元函数的极限概念,考虑一下二元函数极限是x,y无论哪条路径都可以趋近某个值,其实一元函数也有个路径,不过这个路径指的是在x轴无论0,2,4,6……还是1,3,5……等等都是趋近同一值,这是想通之处了。而对于某一类的无界它也不过是挑取某个路径达到无穷。不能满足所有路径都是。

  2.无穷小和零
  无穷小是趋势,一定条件下的趋势,同是一个函数在不同条件下地位不同比如x趋近0时时无穷小x趋近1就是,0是无论那种情况都是趋近0,所以0是无穷小。但是无穷小和0不是等价的,这点把握到这里就可以了。

  3.常见的几种点
  驻点:导数为0的点,不仅有定义,而且导数必须存在且为0
  极值点:相对点,相对于附近某一小临域,它是最大〔小〕的值,这里强调这个临域存在,临域不是区间;这样的点有一些性质,若可导则导数必为0,但导数为0不全是极值点(x^3)
  但是这不是判断极值点的唯一条件,还要根据定义,这就属于不可导的点了(|x|的0点),所以极值点穿插很多,多重考虑,别忘了必须有定义。
  拐点:性质有点类似极值点只是要求不同,它是某一临域左右凸凹性改变,同理既要考虑二阶导数是0还有二阶导不存在的穿插,还要注意最基本,有定义

  4.可积,原函数,变限积分
  可积指定积分存在〔注意是定积分不包括广义积分〕,按几何意义,曲线与x轴面积〔这里也可以说是负面积〕存在。
  原函数是函数,不是一个值,判定是否存在原函数,对它求导后导函数是该函数。
  变限积分定积分下限为常数,上限是自变量,集合两者,把x确定为一个值它就是定积分,某种意义上它可以算是某个原函数,但是这是一般情况,总体来说它还是一个函数。
  可积不一定有原函数〔一个值存在怎么断定一个趋近有函数呢,〕,有第一类间断点是没有原函数但是可以有定积分,可积。有原函数不一定可积〔1/x〕,它们之间关系颇为复杂,求一个定积分我们有能力的就是利用奇偶性或者间接利用原函数〔牛顿,来布尼次公式〕,一马归一马,注意区别。
  而可积和变限积分联系挺大的,一般区间可积的话变限积分不仅存在而且连续,不深入讨论。
  原函数和变限积分是最易混淆的,两者都是函数,求的过程容易觉得变限积分算是原函数的其中一个,一般函数可以这么以为,不过深入讨论,决不这么简单,对于存在原函数的上述结论正确,可是最大的区别就是有第一类间断点没有原函数,但是变限积分存在且连续,图形上理解就是有间断点,不影响面积存在性而且不影响连续性,这点可以证明。

  5.一元与二元函数的可微,可导和连续
  一元函数和二元函数在连续,可微,可导虽然从书上看性质不太一样但这决不违背定理,两个之间有莫大的关系。
  一元函数和二元函数的连续都要求极限存在且等于函数值,不同就是因为不同元函数因为空间的分布不同决定了极限的趋近方式不同,因为一元只有x是一条轴,一根线,那么教材上强调的更多是左右趋近,其实另一角度看,正如概念区别1来说其实方式也有很多,因为别看只是一条轴它却有无穷多个点,极限是要求连续取的,可是为了区别,我们有时候会跳跃取。正如数列极限中2n,2n+1,只有同时取尽才保证极限存在,而二元函数分布于一个平面这就决定了方向的无穷性了,随意一个一元函数都可以决定一个方向y=x,y=x^2等等,作为一条曲线可以作为一条方向只要它过所确定的点即可,一元函数其实就是沿着(x,0)对二元函数的极限,这也就说明二元函数连续,那么在该点确定的一元函数也连续。举个例子f(x,y)在0,0连续,那么f(x,0)肯定在x=0连续,一般到特殊,但是反之却不可以,这也从一定程度说明证明二元函数不连续,可以选取不同y,x关系,极限不同则不连续。
  可导,一元函数中有可导必连续,这是因为导数的定义决定了极限只能是0/0型的极限,自变量趋近,函数必然趋近,可导必连续,可是二元函数却没有可导必连续,为什么呢?那是因为二元函数中的可导指的是偏导,偏导就说明是作为一元函数求导的,尽管它是二元的,既然作为一元函数求导,根据一元函数可导必连续概念,我们自然会有连续的概念,不过这里的连续不是说二元函数连续,而是它作为一元函数连续,什么意思呢?还是上面说的f(x,y)在0,0处对x偏导存在,说明f(x,0)在x为0处连续而不是f(x,y)在x,y=0,0连续,因为连续作用的单位不是整个二元函数,而二元函数中的某个小分支是一元函数,连续只作用到一个分支上了。
  再说可微,因为一元和二元函数的可微定义是不一样的,一元函数定义可微和导数关系拉的很近,Δx将它们穿在一块,有着可微等价于可导的结论,这也是极限定义。而二元函数定义可微时则是将Δx,Δy同时定义在内,无穷小也与两者都相关,所以单从二元函数可导〔偏导〕不能得到可微,因为偏导只是和某个有关,既然涉及两个那么两个关系没那么大了,可微是更深层次考察函数,单从定义式我们就可以得到两个结论,1连续(x趋近x0,y趋近y0试试),2可导〔另某个Δ为0再对照定义〕
  从分析看,其实一元和二元差别之处就在于定义不同,研究范围不同,你如果把二元特殊为一元研究一元函数的性质它都有了。

  6.定积分与面积
  可能大家对它俩关系有了明确的界定,但是我还是想说下,对不太明白的人或许有点用。
  从定义看定积分是Δx与f(xi)的乘积和,可能由于定积分是从面积引出来的大家或许有错觉,它就是面积,但从定义来Δx我们规定若为正那么f(x)不一定全部为正,这样也不是面积了,假如我们将面积也矢量话(注意,面积只能是正),那么这里的定积分就是矢量面积和了,这只帮助理解。在研究定积分中会出现积分上下限颠倒,上面小于下边,这就更说明定积分不是面积了,只有积分上限大于下限,f(x)>0,才是真正意义的面积,所以给你一个题目求面积可不是单纯求定积分,需要你自己分段加符号。二重积分也天然不是体积,同理

  7.定积分和二重积分
  看上去区别很大的,从几何意义上讲,定积分是矢量面积(方便叙述用的),二重积分是矢量体积(同理)。区别大家很容易看到,着重说联系。二重积分的累次积分中我们就看到了它与定积分的某种联系,两次积分,补充下,如果你掌握了定积分求法,那么二重积分你还要掌握的是积分区域的划分,保持清醒的是积分区域中x,y的关系不要应用到f(x,y)中,两者关系不大〔虽然我不学曲面积分,但我隐约明白去年积分区域和函数关系很大,注意区别〕在极坐标换元中易出错。
  求法决定二重积分与定积分关系,二重积分写法有好多种,但你要明白求法是固定的∫∫f(x,y)dxdy=∫(∫f(x,y)dx)dy或∫(∫f(x,y)dy)dx,明白了吗?就是说二重积分是定积分特殊的一种,积分函数是个特别的函数,这样定积分常用的方法二重积分也可以用,尤其是分布积分法,不过用时注意一定要明白积分变量是哪个别混了,这效果和换积分次序差不多一样,不过你换必须不得主观变换上下限,这里避免主观,可以少出错。这个有什么用呢,当然是面对你积分积不出来时如e^(x^2)

  8.二阶非齐次微分方程的两个类型(e^(rx)和sinwx+coswx)
  注意,不多说,想说的是在求特解的时候不要弄混了,为了避免混淆,这样理解:不论那种形式都看作f(x)e^(rx)(acoswx+bsinwx)
  r取0看是什么,x取0看又是什么,两个同时取零呢?
  这样在找特征方程解对照时注意如果实根,把虚部看做0这样把实部和虚部同时对比两者同时符合则同,不符合则一般

  9.二元函数中的两类求极值
  第一类,不带条件求极值,判定方法:偏导都为0,再根据二阶偏导,A,B,C……判断
  第二类,附带条件,注意此类求极值其实质仍为一元函数求导,不过有隐函数的性质,注意推导过程与第一类有很大的区别,比如偏导可以都不为0,做题不要混淆了。

  10.等价,合同,相似
  矩阵A,B等价指A经过初等变换变换可变为B,性质就是秩相同,当然没有要求矩阵必须是n阶的,可以m*n,还有就是向量组等价定义是甲向量组每个向量都可以用乙向量组向量线性表示,乙的也可以用甲的表示称为甲乙向量组等价。两个等价有区别有联系。首先,研究对象不同,前者是矩阵后者是向量组。然后性质不同,矩阵等价必须同型,都是m*n,向量组等价不一定向量个数相同,但维数相同。当然,也有联系,如果两个向量组等价而且向量个数相同,由这些向量组成的矩阵等价〔秩相等〕,但是如果两个矩阵等价,矩阵组成的列向量却不一定等价,除非某组由另一组线性表示〔利用合并向量组极大无关组〕
  相似和合同都是针对n阶方阵而言,P^(-1)AP=B,P可逆,A,B相似
                   P^TAP=B,P可逆,那么A,B合同。
  易知,相似,合同必等价。
  而相似和合同联系的核心公式则是P^(-1)=P^T,也就是实对称正交单位化那部分,他是联系的中心环节,所以相似不需要正交,而合同必须单位正交化了。理解下,这就是相似中为什么正交的原因,而相似必正交也来源于此。

关于"最后阶段,真题的正确打开方式_备考经验_考研帮"15名研友在考研帮APP发表了观点

扫我下载考研帮

考研帮地方站更多

你可能会关心:

来考研帮提升效率

× 关闭